Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis

نویسندگان

  • Anaïs Briot
  • Mete Civelek
  • Atsuko Seki
  • Karen Hoi
  • Julia J. Mack
  • Stephen D. Lee
  • Jason Kim
  • Cynthia Hong
  • Jingjing Yu
  • Gregory A. Fishbein
  • Ladan Vakili
  • Alan M. Fogelman
  • Michael C. Fishbein
  • Aldons J. Lusis
  • Peter Tontonoz
  • Mohamad Navab
  • Judith A. Berliner
  • M. Luisa Iruela-Arispe
چکیده

Although much progress has been made in identifying the mechanisms that trigger endothelial activation and inflammatory cell recruitment during atherosclerosis, less is known about the intrinsic pathways that counteract these events. Here we identified NOTCH1 as an antagonist of endothelial cell (EC) activation. NOTCH1 was constitutively expressed by adult arterial endothelium, but levels were significantly reduced by high-fat diet. Furthermore, treatment of human aortic ECs (HAECs) with inflammatory lipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [Ox-PAPC]) and proinflammatory cytokines (TNF and IL1β) decreased Notch1 expression and signaling in vitro through a mechanism that requires STAT3 activation. Reduction of NOTCH1 in HAECs by siRNA, in the absence of inflammatory lipids or cytokines, increased inflammatory molecules and binding of monocytes. Conversely, some of the effects mediated by Ox-PAPC were reversed by increased NOTCH1 signaling, suggesting a link between lipid-mediated inflammation and Notch1. Interestingly, reduction of NOTCH1 by Ox-PAPC in HAECs was associated with a genetic variant previously correlated to high-density lipoprotein in a human genome-wide association study. Finally, endothelial Notch1 heterozygous mice showed higher diet-induced atherosclerosis. Based on these findings, we propose that reduction of endothelial NOTCH1 is a predisposing factor in the onset of vascular inflammation and initiation of atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic Acyl-CoA:cholesterol acyltransferase inhibition reduces inflammation and improves vascular function in hypercholesterolemia.

BACKGROUND Circulating lipids may initiate and progress atherosclerosis by causing vascular inflammation. Monocytes and tissue macrophages are involved and regulate lipid metabolism in the vascular wall through acetylation of cholesterol by acyl-CoA:cholesterol acyltransferase (ACAT). ACAT inhibition reduces atherosclerosis in animal models by mechanisms that may be independent of their effects...

متن کامل

Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis.

AIM To determine the role of NOTCH during the arterial injury response and the subsequent chronic arterial-wall inflammation underlying atherosclerosis. METHODS AND RESULTS We have generated a mouse model of endothelial-specific (Cdh5-driven) depletion of the Notch effector recombination signal binding protein for immunoglobulin kappa J region (RBPJ) [(ApoE-/-); homozygous RBPJk conditional m...

متن کامل

Effect of Tribulus Terrestris L. on Expression of ICAM-1, VCAM-1, E-Selectin and Proteome Profile of Human Endothelial Cells In-Vitro

Background: Atherosclerosis is a chronic inflammation that interferes with blood arteries functions due to the accumulation of low density lipids and cholesterol. Objective: To investigate the effect of aqueous extract and saponin fraction of Tribulus terrestris L. (TT) on the proteome and expression of intracellular adhesion molecule-1 (ICAM-1), vascu...

متن کامل

Molecular Cardiology Notch Signaling Regulates Endothelial Progenitor Cell Activity During Recovery From Arterial Injury in Hypercholesterolemic Mice

Background—Little is known about the role of endothelial progenitor cells (EPCs) in atherosclerosis. Accordingly, we performed a series of assessments with hypercholesterolemic (apolipoprotein E–null [ApoE / ]) and wild-type (WT) mice to evaluate how cholesterol influences reendothelialization, atherosclerosis, and EPC function after arterial injury. Methods and Results—Unexpectedly, reendothel...

متن کامل

Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice.

BACKGROUND Little is known about the role of endothelial progenitor cells (EPCs) in atherosclerosis. Accordingly, we performed a series of assessments with hypercholesterolemic (apolipoprotein E-null [ApoE(-/-)]) and wild-type (WT) mice to evaluate how cholesterol influences reendothelialization, atherosclerosis, and EPC function after arterial injury. METHODS AND RESULTS Unexpectedly, reendo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2015